Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jacobian Adversarially Regularized Networks for Robustness (1912.10185v2)

Published 21 Dec 2019 in cs.CV, cs.CR, and cs.NE

Abstract: Adversarial examples are crafted with imperceptible perturbations with the intent to fool neural networks. Against such attacks, adversarial training and its variants stand as the strongest defense to date. Previous studies have pointed out that robust models that have undergone adversarial training tend to produce more salient and interpretable Jacobian matrices than their non-robust counterparts. A natural question is whether a model trained with an objective to produce salient Jacobian can result in better robustness. This paper answers this question with affirmative empirical results. We propose Jacobian Adversarially Regularized Networks (JARN) as a method to optimize the saliency of a classifier's Jacobian by adversarially regularizing the model's Jacobian to resemble natural training images. Image classifiers trained with JARN show improved robust accuracy compared to standard models on the MNIST, SVHN and CIFAR-10 datasets, uncovering a new angle to boost robustness without using adversarial training examples.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Alvin Chan (15 papers)
  2. Yi Tay (94 papers)
  3. Yew Soon Ong (30 papers)
  4. Jie Fu (229 papers)
Citations (72)

Summary

We haven't generated a summary for this paper yet.