Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical solution of large scale Hartree-Fock-Bogoliubov equations (1912.10157v1)

Published 21 Dec 2019 in physics.comp-ph, cs.NA, and math.NA

Abstract: The Hartree-Fock-Bogoliubov (HFB) theory is the starting point for treating superconducting systems. However, the computational cost for solving large scale HFB equations can be much larger than that of the Hartree-Fock equations, particularly when the Hamiltonian matrix is sparse, and the number of electrons $N$ is relatively small compared to the matrix size $N_{b}$. We first provide a concise and relatively self-contained review of the HFB theory for general finite sized quantum systems, with special focus on the treatment of spin symmetries from a linear algebra perspective. We then demonstrate that the pole expansion and selected inversion (PEXSI) method can be particularly well suited for solving large scale HFB equations. For a Hubbard-type Hamiltonian, the cost of PEXSI is at most $\Or(N_b2)$ for both gapped and gapless systems, which can be significantly faster than the standard cubic scaling diagonalization methods. We show that PEXSI can solve a two-dimensional Hubbard-Hofstadter model with $N_b$ up to $2.88\times 106$, and the wall clock time is less than $100$ s using $17280$ CPU cores. This enables the simulation of physical systems under experimentally realizable magnetic fields, which cannot be otherwise simulated with smaller systems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.