Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Collision Avoidance in Dense Airspace using Deep Reinforcement Learning (1912.10146v1)

Published 20 Dec 2019 in cs.LG, cs.AI, cs.RO, cs.SY, and eess.SY

Abstract: New methodologies will be needed to ensure the airspace remains safe and efficient as traffic densities rise to accommodate new unmanned operations. This paper explores how unmanned free-flight traffic may operate in dense airspace. We develop and analyze autonomous collision avoidance systems for aircraft operating in dense airspace where traditional collision avoidance systems fail. We propose a metric for quantifying the decision burden on a collision avoidance system as well as a metric for measuring the impact of the collision avoidance system on airspace. We use deep reinforcement learning to compute corrections for an existing collision avoidance approach to account for dense airspace. The results show that a corrected collision avoidance system can operate more efficiently than traditional methods in dense airspace while maintaining high levels of safety.

Citations (28)

Summary

We haven't generated a summary for this paper yet.