Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter identification in uncertain scalar conservation laws discretized with the discontinuous stochastic Galerkin Scheme (1912.09813v3)

Published 20 Dec 2019 in math.NA and cs.NA

Abstract: We study an identification problem which estimates the parameters of the underlying random distribution for uncertain scalar conservation laws. The hyperbolic equations are discretized with the so-called discontinuous stochastic Galerkin method, i.e., using a spatial discontinuous Galerkin scheme and a Multielement stochastic Galerkin ansatz in the random space. We assume an uncertain flux or uncertain initial conditions and that a data set of an observed solution is given. The uncertainty is assumed to be uniformly distributed on an unknown interval and we focus on identifying the correct endpoints of this interval. The first-order optimality conditions from the discontinuous stochastic Galerkin discretization are computed on the time-continuous level. Then, we solve the resulting semi-discrete forward and backward schemes with the Runge Kutta method. To illustrate the feasibility of the approach, we apply the method to a stochastic advection and a stochastic equation of Burgers' type. The results show that the method is able to identify the distribution parameters of the random variable in the uncertain differential equation even if discontinuities are present.

Citations (1)

Summary

We haven't generated a summary for this paper yet.