Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving ab initio trading strategies in heterogeneous environments (1912.09524v1)

Published 19 Dec 2019 in cs.NE, q-bio.PE, and q-fin.TR

Abstract: Securities markets are quintessential complex adaptive systems in which heterogeneous agents compete in an attempt to maximize returns. Species of trading agents are also subject to evolutionary pressure as entire classes of strategies become obsolete and new classes emerge. Using an agent-based model of interacting heterogeneous agents as a flexible environment that can endogenously model many diverse market conditions, we subject deep neural networks to evolutionary pressure to create dominant trading agents. After analyzing the performance of these agents and noting the emergence of anomalous superdiffusion through the evolutionary process, we construct a method to turn high-fitness agents into trading algorithms. We backtest these trading algorithms on real high-frequency foreign exchange data, demonstrating that elite trading algorithms are consistently profitable in a variety of market conditions---even though these algorithms had never before been exposed to real financial data. These results provide evidence to suggest that developing \textit{ab initio} trading strategies by repeated simulation and evolution in a mechanistic market model may be a practical alternative to explicitly training models with past observed market data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. David Rushing Dewhurst (14 papers)
  2. Yi Li (483 papers)
  3. Alexander Bogdan (1 paper)
  4. Jasmine Geng (1 paper)

Summary

We haven't generated a summary for this paper yet.