Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal-Difference estimation of dynamic discrete choice models (1912.09509v2)

Published 19 Dec 2019 in econ.EM

Abstract: We study the use of Temporal-Difference learning for estimating the structural parameters in dynamic discrete choice models. Our algorithms are based on the conditional choice probability approach but use functional approximations to estimate various terms in the pseudo-likelihood function. We suggest two approaches: The first - linear semi-gradient - provides approximations to the recursive terms using basis functions. The second - Approximate Value Iteration - builds a sequence of approximations to the recursive terms by solving non-parametric estimation problems. Our approaches are fast and naturally allow for continuous and/or high-dimensional state spaces. Furthermore, they do not require specification of transition densities. In dynamic games, they avoid integrating over other players' actions, further heightening the computational advantage. Our proposals can be paired with popular existing methods such as pseudo-maximum-likelihood, and we propose locally robust corrections for the latter to achieve parametric rates of convergence. Monte Carlo simulations confirm the properties of our algorithms in practice.

Citations (6)

Summary

We haven't generated a summary for this paper yet.