Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rate of convergence for products of independent non-Hermitian random matrices (1912.09300v2)

Published 19 Dec 2019 in math.PR

Abstract: We study the rate of convergence of the empirical spectral distribution of products of independent non-Hermitian random matrices to the power of the Circular Law. The distance to the deterministic limit distribution will be measured in terms of a uniform Kolmogorov-like distance. First, we prove that for products of Ginibre matrices, the optimal rate is given by $\mathcal O (1/\sqrt n)$, which is attained with overwhelming probability up to a logarithmic correction. Avoiding the edge, the rate of convergence of the mean empirical spectral distribution is even faster. Second, we show that also products of matrices with independent entries attain this optimal rate in the bulk up to a logarithmic factor. In the case of Ginibre matrices, we apply a saddlepoint approximation to a double contour integral representation of the density and in the case of matrices with independent entries we make use of techniques from local laws.

Summary

We haven't generated a summary for this paper yet.