Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of the multiplicative Schwarz method for matrices with a special block structure (1912.09107v1)

Published 19 Dec 2019 in math.NA and cs.NA

Abstract: We analyze the convergence of the (algebraic) multiplicative Schwarz method applied to linear algebraic systems with matrices having a special block structure that arises, for example, when a (partial) differential equation is posed and discretized on a domain that consists of two subdomains with an overlap. This is a basic situation in the context of domain decomposition methods. Our analysis is based on the algebraic structure of the Schwarz iteration matrices, and we derive error bounds that are based on the block diagonal dominance of the given system matrix. Our analysis does not assume that the system matrix is symmetric (positive definite), or has the $M$- or $H$-matrix property. Our approach is motivated by and significantly generalizes an analysis for a special one-dimensional model problem given in [4].

Citations (2)

Summary

We haven't generated a summary for this paper yet.