Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Per-sample Prediction Intervals for Extreme Learning Machines (1912.09090v1)

Published 19 Dec 2019 in cs.LG and stat.ML

Abstract: Prediction intervals in supervised Machine Learning bound the region where the true outputs of new samples may fall. They are necessary in the task of separating reliable predictions of a trained model from near random guesses, minimizing the rate of False Positives, and other problem-specific tasks in applied Machine Learning. Many real problems have heteroscedastic stochastic outputs, which explains the need of input-dependent prediction intervals. This paper proposes to estimate the input-dependent prediction intervals by a separate Extreme Learning Machine model, using variance of its predictions as a correction term accounting for the model uncertainty. The variance is estimated from the model's linear output layer with a weighted Jackknife method. The methodology is very fast, robust to heteroscedastic outputs, and handles both extremely large datasets and insufficient amount of training data.

Citations (5)

Summary

We haven't generated a summary for this paper yet.