Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some results on second-order elliptic operators with polynomially growing coefficients in $L^p$-spaces (1912.09071v3)

Published 19 Dec 2019 in math.AP

Abstract: In this paper we study minimal realizations in $Lp(\mathbb{R}N)$ of the second order elliptic operator \begin{equation*} { A_{b,c}} := (1+|x|\alpha)\Delta + b|x|{\alpha-2}x\cdot\nabla - c |x|{\alpha-2} - |x|{\beta} , \quad x \in \mathbb{R}N, \end{equation*} where $N\geq3$, $\alpha\in[0,2)$, $\beta >0$, and $b, c$ are real numbers. We use quadratic form methods to prove that $\left(A_{b,c},C_c\infty\left(\mathbb{R}N\setminus {0}\right)\right)$ admits an extension that generates an analytic $C_0-$semigroup for all $p\in(1,\infty)$. Moreover, we give conditions on the coefficients under which this extension is precisely the closure of $\left(A_{b,c},C_c\infty\left(\mathbb{R}N\setminus {0}\right)\right)$.

Summary

We haven't generated a summary for this paper yet.