Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integration of nonsmooth $\boldsymbol{2}$-forms: from Young to Itô and Stratonovich (1912.08796v1)

Published 18 Dec 2019 in math.FA, math.CA, and math.DG

Abstract: We show that geometric integrals of the type $\int_\Omega f\, d g1\wedge \, d g2$ can be defined over a two-dimensional domain $\Omega$ when the functions $f$, $g1$, $g2\colon \mathbb{R}2\to \mathbb{R}$ are just H\"{o}lder continuous with sufficiently large H\"{o}lder exponents and the boundary of $\Omega$ has sufficiently small dimension, by summing over a refining sequence of partitions the discrete Stratonovich or It^{o} type terms. This leads to a two-dimensional extension of the classical Young integral that coincides with the integral introduced recently by R.~Z\"{u}st. We further show that the Stratonovich-type summation allows to weaken the requirements on H\"{o}lder exponents of the map $g=(g1,g2)$ when $f(x)=F(x,g(x))$ with $F$ sufficiently regular. The technique relies upon an extension of the sewing lemma from Rough paths theory to alternating functions of two-dimensional oriented simplices, also proven in the paper.

Summary

We haven't generated a summary for this paper yet.