Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Adversarial Attacks On Audiovisual Speech Recognition (1912.08639v2)

Published 18 Dec 2019 in cs.CV, cs.SD, and eess.AS

Abstract: Adversarial attacks pose a threat to deep learning models. However, research on adversarial detection methods, especially in the multi-modal domain, is very limited. In this work, we propose an efficient and straightforward detection method based on the temporal correlation between audio and video streams. The main idea is that the correlation between audio and video in adversarial examples will be lower than benign examples due to added adversarial noise. We use the synchronisation confidence score as a proxy for audiovisual correlation and based on it we can detect adversarial attacks. To the best of our knowledge, this is the first work on detection of adversarial attacks on audiovisual speech recognition models. We apply recent adversarial attacks on two audiovisual speech recognition models trained on the GRID and LRW datasets. The experimental results demonstrate that the proposed approach is an effective way for detecting such attacks.

Citations (18)

Summary

We haven't generated a summary for this paper yet.