Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite ergodic theory meets Boltzmann statistics (1912.08456v2)

Published 18 Dec 2019 in cond-mat.stat-mech and cond-mat.soft

Abstract: We investigate the overdamped stochastic dynamics of a particle in an asymptotically flat external potential field, in contact with a thermal bath. For an infinite system size, the particles may escape the force field and diffuse freely at large length scales. The partition function diverges and hence the standard canonical ensemble fails. This is replaced with tools stemming from infinite ergodic theory. Boltzmann-Gibbs statistics, even though not normalized, still describes integrable observables, like energy and occupation times. The Boltzmann infinite density is derived heuristically using an entropy maximization principle, as well as via a first-principles calculation using an eigenfunction expansion in the continuum of low-energy states. A generalized virial theorem is derived, showing how the virial coefficient describes the delay in the diffusive spreading of the particles, found at large distances. When the process is non-recurrent, e.g. diffusion in three dimensions with a Coulomb-like potential, we use weighted time averages to restore basic canonical relations between time and ensemble averages.

Summary

We haven't generated a summary for this paper yet.