Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MALA: Cross-Domain Dialogue Generation with Action Learning (1912.08442v2)

Published 18 Dec 2019 in cs.CL, cs.AI, and cs.LG

Abstract: Response generation for task-oriented dialogues involves two basic components: dialogue planning and surface realization. These two components, however, have a discrepancy in their objectives, i.e., task completion and language quality. To deal with such discrepancy, conditioned response generation has been introduced where the generation process is factorized into action decision and language generation via explicit action representations. To obtain action representations, recent studies learn latent actions in an unsupervised manner based on the utterance lexical similarity. Such an action learning approach is prone to diversities of language surfaces, which may impinge task completion and language quality. To address this issue, we propose multi-stage adaptive latent action learning (MALA) that learns semantic latent actions by distinguishing the effects of utterances on dialogue progress. We model the utterance effect using the transition of dialogue states caused by the utterance and develop a semantic similarity measurement that estimates whether utterances have similar effects. For learning semantic actions on domains without dialogue states, MsALA extends the semantic similarity measurement across domains progressively, i.e., from aligning shared actions to learning domain-specific actions. Experiments using multi-domain datasets, SMD and MultiWOZ, show that our proposed model achieves consistent improvements over the baselines models in terms of both task completion and language quality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xinting Huang (36 papers)
  2. Jianzhong Qi (68 papers)
  3. Yu Sun (226 papers)
  4. Rui Zhang (1138 papers)
Citations (18)