Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The accuracy vs. coverage trade-off in patient-facing diagnosis models (1912.08041v1)

Published 11 Dec 2019 in cs.LG and stat.ML

Abstract: A third of adults in America use the Internet to diagnose medical concerns, and online symptom checkers are increasingly part of this process. These tools are powered by diagnosis models similar to clinical decision support systems, with the primary difference being the coverage of symptoms and diagnoses. To be useful to patients and physicians, these models must have high accuracy while covering a meaningful space of symptoms and diagnoses. To the best of our knowledge, this paper is the first in studying the trade-off between the coverage of the model and its performance for diagnosis. To this end, we learn diagnosis models with different coverage from EHR data. We find a 1\% drop in top-3 accuracy for every 10 diseases added to the coverage. We also observe that complexity for these models does not affect performance, with linear models performing as well as neural networks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.