Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge-Enhanced Attentive Learning for Answer Selection in Community Question Answering Systems (1912.07915v1)

Published 17 Dec 2019 in cs.AI, cs.CL, and cs.IR

Abstract: In the community question answering (CQA) system, the answer selection task aims to identify the best answer for a specific question, and thus is playing a key role in enhancing the service quality through recommending appropriate answers for new questions. Recent advances in CQA answer selection focus on enhancing the performance by incorporating the community information, particularly the expertise (previous answers) and authority (position in the social network) of an answerer. However, existing approaches for incorporating such information are limited in (a) only considering either the expertise or the authority, but not both; (b) ignoring the domain knowledge to differentiate topics of previous answers; and (c) simply using the authority information to adjust the similarity score, instead of fully utilizing it in the process of measuring the similarity between segments of the question and the answer. We propose the Knowledge-enhanced Attentive Answer Selection (KAAS) model, which enhances the performance through (a) considering both the expertise and the authority of the answerer; (b) utilizing the human-labeled tags, the taxonomy of the tags, and the votes as the domain knowledge to infer the expertise of the answer; (c) using matrix decomposition of the social network (formed by following-relationship) to infer the authority of the answerer and incorporating such information in the process of evaluating the similarity between segments. Besides, for vertical community, we incorporate an external knowledge graph to capture more professional information for vertical CQA systems. Then we adopt the attention mechanism to integrate the analysis of the text of questions and answers and the aforementioned community information. Experiments with both vertical and general CQA sites demonstrate the superior performance of the proposed KAAS model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fengshi Jing (1 paper)
  2. Qingpeng Zhang (20 papers)
Citations (14)