Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized reliability based on distances (1912.07137v2)

Published 15 Dec 2019 in stat.ME and stat.AP

Abstract: The intraclass correlation coefficient (ICC) is a classical index of measurement reliability. With the advent of new and complex types of data for which the ICC is not defined, there is a need for new ways to assess reliability. To meet this need, we propose a new distance-based intraclass correlation coefficient (dbICC), defined in terms of arbitrary distances among observations. We introduce a bias correction to improve the coverage of bootstrap confidence intervals for the dbICC, and demonstrate its efficacy via simulation. We illustrate the proposed method by analyzing the test-retest reliability of brain connectivity matrices derived from a set of repeated functional magnetic resonance imaging scans. The Spearman-Brown formula, which shows how more intensive measurement increases reliability, is extended to encompass the dbICC.

Summary

We haven't generated a summary for this paper yet.