Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Linear Regression on Deep Representations (1912.06760v1)

Published 14 Dec 2019 in cs.LG and stat.ML

Abstract: A simple approach to obtaining uncertainty-aware neural networks for regression is to do Bayesian linear regression (BLR) on the representation from the last hidden layer. Recent work [Riquelme et al., 2018, Azizzadenesheli et al., 2018] indicates that the method is promising, though it has been limited to homoscedastic noise. In this paper, we propose a novel variation that enables the method to flexibly model heteroscedastic noise. The method is benchmarked against two prominent alternative methods on a set of standard datasets, and finally evaluated as an uncertainty-aware model in model-based reinforcement learning. Our experiments indicate that the method is competitive with standard ensembling, and ensembles of BLR outperforms the methods we compared to.

Citations (2)

Summary

We haven't generated a summary for this paper yet.