Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Lagrangian Dynamics of Vorticity. I. General Theory (1912.06677v1)

Published 13 Dec 2019 in physics.flu-dyn, cond-mat.supr-con, math-ph, math.MP, and physics.comp-ph

Abstract: Prior mathematical work of Constantin and Iyer (2008, 2011) has shown that incompressible Navier-Stokes solutions possess infinitely-many stochastic Lagrangian conservation laws for vorticity, backward in time, which generalize the invariants of Cauchy (1815) for smooth Euler solutions. We simplify this theory for the case of wall-bounded flows by appealing to the Kuz'min (1983)-Oseledets (1989) representation of Navier-Stokes dynamics, in terms of the vortex-momentum density associated to a continuous distribution of infinitesimal vortex rings. The Constantin-Iyer theory provides an exact representation for vorticity at any interior point as an average over stochastic vorticity contributions transported from the wall. We discuss relations of this Lagrangian formulation with the Eulerian theory of Lighthill (1963)-Morton (1984) for vorticity generation at solid walls, and also with a statistical result of Taylor (1932)-Huggins (1994), which connects dissipative drag with organized cross-stream motion of vorticity and which is closely analogous to the "Josephson-Anderson relation" for quantum superfluids. We elaborate a Monte Carlo numerical Lagrangian scheme to calculate the stochastic Cauchy invariants and their statistics, given the Eulerian space-time velocity field. The method is validated using an online database of a turbulent channel-flow simulation (Graham et al. 2016), where conservation of the mean Cauchy invariant is verified for two selected buffer-layer events corresponding to an "ejection" and a "sweep". The variances of the stochastic Cauchy invariants grow exponentially backward in time, however, confirming earlier observations of Lagrangian chaos in channel-flow turbulence.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com