Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A multimesh finite element method for the Navier-Stokes equations based on projection methods (1912.06392v1)

Published 13 Dec 2019 in math.NA and cs.NA

Abstract: The multimesh finite element method is a technique for solving partial differential equations on multiple non-matching meshes by enforcing interface conditions using Nitsche's method. Since the non-matching meshes can result in arbitrarily cut cells, additional stabilization terms are needed to obtain a stable variational formulation. In this contribution we extend the multimesh finite element method to the Navier-Stokes equations based on the incremental pressure correction scheme. For each step in the pressure correction scheme, we derive a multimesh finite element formulation with suitable stabilization terms. The overall scheme yields expected spatial and temporal convergence rates on the Taylor-Green problem, and demonstrates good agreement for the drag and lift coefficients on the Turek-Schafer benchmark (DFG benchmark 2D-3). Finally, we illustrate the capabilities of the proposed scheme by optimizing the layout of obstacles in a channel.

Citations (11)

Summary

We haven't generated a summary for this paper yet.