Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provably Efficient Reinforcement Learning with Aggregated States (1912.06366v2)

Published 13 Dec 2019 in stat.ML, cs.LG, and math.OC

Abstract: We establish that an optimistic variant of Q-learning applied to a fixed-horizon episodic Markov decision process with an aggregated state representation incurs regret $\tilde{\mathcal{O}}(\sqrt{H5 M K} + \epsilon HK)$, where $H$ is the horizon, $M$ is the number of aggregate states, $K$ is the number of episodes, and $\epsilon$ is the largest difference between any pair of optimal state-action values associated with a common aggregate state. Notably, this regret bound does not depend on the number of states or actions and indicates that asymptotic per-period regret is no greater than $\epsilon$, independent of horizon. To our knowledge, this is the first such result that applies to reinforcement learning with nontrivial value function approximation without any restrictions on transition probabilities.

Citations (31)

Summary

We haven't generated a summary for this paper yet.