Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential Subordinations for Starlike Functions Associated With A Nephroid Domain (1912.06326v3)

Published 13 Dec 2019 in math.CV

Abstract: Let $\mathcal{A}$ be the set of all analytic functions $f$ defined in the open unit disk $\mathbb{D}$ and satisfying $f(0)=f'(0)-1=0$. In this paper, we consider the function $\varphi_{\scriptscriptstyle {Ne}}(z):=1+z-z3/3$, which maps the unit circle ${z:|z|=1}$ onto a $2$-cusped curve called nephroid given by $\left((u-1)2+v2-\frac{4}{9}\right)3-\frac{4 v2}{3}=0$, and the function class $\mathcal{S}*_{Ne}$ defined as \begin{align*} \mathcal{S}*{Ne}:=\left{f\in\mathcal{A}:\frac{zf'(z)}{f(z)}\prec\varphi{\scriptscriptstyle {Ne}}(z)\right}, \end{align*} where $\prec$ denotes subordination. We obtain sharp estimates on $\beta\in\mathbb{R}$ so that the first-order differential subordination \begin{align*} 1+\beta\frac{zp'(z)}{pj(z)}\prec\mathcal{P}(z), \quad j=0,1,2 \end{align*} implies $p\prec\varphi_{\scriptscriptstyle{Ne}}$, where $\mathcal{P}(z)$ is certain Carath\'{e}odory function with nice geometrical properties and $p(z)$ is analytic satisfying $p(0)=1$. Moreover, we use properties of Gaussian hypergeometric function in order to get the subordination $p\prec\varphi_{\scriptscriptstyle{Ne}}$ whenever $p(z)+\beta zp'(z)\prec\sqrt{1+z}$ or $1+z$. As applications, we establish sufficient conditions for $f\in\mathcal{A}$ to be in the class $\mathcal{S}*_{Ne}$.

Summary

We haven't generated a summary for this paper yet.