Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Use of Deep Learning for Symbolic Integration: A Review of (Lample and Charton, 2019) (1912.05752v2)

Published 12 Dec 2019 in cs.LG

Abstract: Lample and Charton (2019) describe a system that uses deep learning technology to compute symbolic, indefinite integrals, and to find symbolic solutions to first- and second-order ordinary differential equations, when the solutions are elementary functions. They found that, over a particular test set, the system could find solutions more successfully than sophisticated packages for symbolic mathematics such as Mathematica run with a long time-out. This is an impressive accomplishment, as far as it goes. However, the system can handle only a quite limited subset of the problems that Mathematica deals with, and the test set has significant built-in biases. Therefore the claim that this outperforms Mathematica on symbolic integration needs to be very much qualified.

Citations (23)

Summary

We haven't generated a summary for this paper yet.