Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sub-sampling and other considerations for efficient risk estimation in large portfolios (1912.05484v2)

Published 11 Dec 2019 in q-fin.MF, cs.NA, and math.NA

Abstract: Computing risk measures of a financial portfolio comprising thousands of derivatives is a challenging problem because (a) it involves a nested expectation requiring multiple evaluations of the loss of the financial portfolio for different risk scenarios and (b) evaluating the loss of the portfolio is expensive and the cost increases with its size. In this work, we look at applying Multilevel Monte Carlo (MLMC) with adaptive inner sampling to this problem and discuss several practical considerations. In particular, we discuss a sub-sampling strategy whose computational complexity does not increase with the size of the portfolio. We also discuss several control variates that significantly improve the efficiency of MLMC in our setting.

Citations (5)

Summary

We haven't generated a summary for this paper yet.