Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting and Correcting Adversarial Images Using Image Processing Operations (1912.05391v2)

Published 11 Dec 2019 in cs.LG and stat.ML

Abstract: Deep neural networks (DNNs) have achieved excellent performance on several tasks and have been widely applied in both academia and industry. However, DNNs are vulnerable to adversarial machine learning attacks, in which noise is added to the input to change the network output. We have devised an image-processing-based method to detect adversarial images based on our observation that adversarial noise is reduced after applying these operations while the normal images almost remain unaffected. In addition to detection, this method can be used to restore the adversarial images' original labels, which is crucial to restoring the normal functionalities of DNN-based systems. Testing using an adversarial machine learning database we created for generating several types of attack using images from the ImageNet Large Scale Visual Recognition Challenge database demonstrated the efficiency of our proposed method for both detection and correction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.