Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional central limit theorems for random vectors under sub-linear expectations (1912.04715v1)

Published 8 Dec 2019 in math.PR

Abstract: The central limit theorem of martingales is the fundamental tool for studying the convergence of stochastic processes. The central limit theorem and functional central limit theorem are obtained for martingale like random variables under the sub-linear expectation by Zhang (2019). In this paper, we consider the multi-dimensional martingale like random vectors and establish a functional central limit theorem. As applications, the Lindeberg central limit theorem for independent random vectors is established, and the sufficient and necessary conditions of the central limit theorem for independent and identically distributed random vectors are obtained.

Summary

We haven't generated a summary for this paper yet.