Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Analysis System of Calcaneus Radiograph: Rotation-Invariant Landmark Detection for Calcaneal Angle Measurement, Fracture Identification and Fracture Region Segmentation (1912.04536v5)

Published 10 Dec 2019 in eess.IV and cs.CV

Abstract: Calcaneus is the largest tarsal bone to withstand the daily stresses of weight-bearing. The calcaneal fracture is the most common type in the tarsal bone fractures. After a fracture is suspected, plain radiographs should be taken first. Bohler's Angle (BA) and Critical Angle of Gissane (CAG), measured by four anatomic landmarks in lateral foot radiograph, can guide fracture diagnosis and facilitate operative recovery of the fractured calcaneus. This study aims to develop an analysis system that can automatically locate four anatomic landmarks, measure BA and CAG for fracture assessment, identify fractured calcaneus, and segment fractured regions. For landmark detection, we proposed a coarse-to-fine Rotation-Invariant Regression-Voting (RIRV) landmark detection method based on regressive Multi-Layer Perceptron (MLP) and Scale Invariant Feature Transform (SIFT) patch descriptor, which solves the problem of fickle rotation of calcaneus. By implementing a novel normalization approach, the RIRV method is explicitly rotation-invariance comparing with traditional regressive methods. For fracture identification and segmentation, a convolution neural network (CNN) based on U-Net with auxiliary classification head (U-Net-CH) is designed. The input ROIs of the CNN are normalized by detected landmarks to uniform view, orientation, and scale. The advantage of this approach is the multi-task learning that combines classification and segmentation. Our system can accurately measure BA and CAG with a mean angle error of 3.8 and 6.2 respectively. For fracture identification and fracture region segmentation, our system presents good performance with an F1-score of 96.55%, recall of 94.99%, and segmentation IoU-score of 0.586.

Summary

We haven't generated a summary for this paper yet.