Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Basis Prediction Networks for Effective Burst Denoising with Large Kernels (1912.04421v2)

Published 9 Dec 2019 in cs.CV

Abstract: Bursts of images exhibit significant self-similarity across both time and space. This motivates a representation of the kernels as linear combinations of a small set of basis elements. To this end, we introduce a novel basis prediction network that, given an input burst, predicts a set of global basis kernels -- shared within the image -- and the corresponding mixing coefficients -- which are specific to individual pixels. Compared to state-of-the-art techniques that output a large tensor of per-pixel spatiotemporal kernels, our formulation substantially reduces the dimensionality of the network output. This allows us to effectively exploit comparatively larger denoising kernels, achieving both significant quality improvements (over 1dB PSNR) and faster run-times over state-of-the-art methods.

Citations (66)

Summary

We haven't generated a summary for this paper yet.