Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bi-Semantic Reconstructing Generative Network for Zero-shot Learning (1912.03877v3)

Published 9 Dec 2019 in cs.CV and cs.LG

Abstract: Many recent methods of zero-shot learning (ZSL) attempt to utilize generative model to generate the unseen visual samples from semantic descriptions and random noise. Therefore, the ZSL problem becomes a traditional supervised classification problem. However, most of the existing methods based on the generative model only focus on the quality of synthesized samples at the training stage, and ignore the importance of the zero-shot recognition stage. In this paper, we consider both the above two points and propose a novel approach. Specially, we select the Generative Adversarial Network (GAN) as our generative model. In order to improve the quality of synthesized samples, considering the internal relation of the semantic description in the semantic space as well as the fact that the seen and unseen visual information belong to different domains, we propose a bi-semantic reconstructing (BSR) component which contain two different semantic reconstructing regressors to lead the training of GAN. Since the semantic descriptions are available during the training stage, to further improve the ability of classifier, we combine the visual samples and semantic descriptions to train a classifier. At the recognition stage, we naturally utilize the BSR component to transfer the visual features and semantic descriptions, and concatenate them for classification. Experimental results show that our method outperforms the state of the art on several ZSL benchmark datasets with significant improvements.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shibing Xu (1 paper)
  2. Zishu Gao (1 paper)
  3. Guojun Xie (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.