Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain-adaptive Crowd Counting via High-quality Image Translation and Density Reconstruction (1912.03677v3)

Published 8 Dec 2019 in cs.CV

Abstract: Recently, crowd counting using supervised learning achieves a remarkable improvement. Nevertheless, most counters rely on a large amount of manually labeled data. With the release of synthetic crowd data, a potential alternative is transferring knowledge from them to real data without any manual label. However, there is no method to effectively suppress domain gaps and output elaborate density maps during the transferring. To remedy the above problems, this paper proposes a Domain-Adaptive Crowd Counting (DACC) framework, which consists of a high-quality image translation and density map reconstruction. To be specific, the former focuses on translating synthetic data to realistic images, which prompts the translation quality by segregating domain-shared/independent features and designing content-aware consistency loss. The latter aims at generating pseudo labels on real scenes to improve the prediction quality. Next, we retrain a final counter using these pseudo labels. Adaptation experiments on six real-world datasets demonstrate that the proposed method outperforms the state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Junyu Gao (64 papers)
  2. Tao Han (233 papers)
  3. Qi Wang (561 papers)
  4. Yuan Yuan (234 papers)
Citations (61)

Summary

We haven't generated a summary for this paper yet.