Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative Estimates on the Singular Sets of Alexandrov Spaces (1912.03615v1)

Published 8 Dec 2019 in math.DG and math.MG

Abstract: Let $X\in\text{Alex}\,n(-1)$ be an $n$-dimensional Alexandrov space with curvature $\ge -1$. Let the $r$-scale $(k,\epsilon)$-singular set $\mathcal Sk_{\epsilon,\,r}(X)$ be the collection of $x\in X$ so that $B_r(x)$ is not $\epsilon r$-close to a ball in any splitting space $\mathbb R{k+1}\times Z$. We show that there exists $C(n,\epsilon)>0$ and $\beta(n,\epsilon)>0$, independent of the volume, so that for any disjoint collection $\big{B_{r_i}(x_i):x_i\in \mathcal S_{\epsilon,\,\beta r_i}k(X)\cap B_1, \,r_i\le 1\big}$, the packing estimate $\sum r_ik\le C$ holds. Consequently, we obtain the Hausdorff measure estimates $\mathcal Hk(\mathcal Sk_\epsilon(X)\cap B_1)\le C$ and $\mathcal Hn\big(B_r (\mathcal Sk_{\epsilon,\,r}(X))\cap B_1(p)\big)\leq C\,r{n-k}$. This answers an open question asked by Kapovitch and Lytchak. We also show that the $k$-singular set $\mathcal Sk(X)=\underset{\epsilon>0}\cup\left(\underset{r>0}\cap\mathcal Sk_{\epsilon,\,r}\right)$ is $k$-rectifiable and construct examples to show that such a structure is sharp. For instance, in the $k=1$ case we can build for any closed set $T\subseteq \mathbb S1$ and $\epsilon>0$ a space $Y\in\text{Alex}3(0)$ with $\mathcal S{1}_\epsilon(Y)=\phi(T)$, where $\phi\colon\mathbb S1\to Y$ is a bi-Lipschitz embedding. Taking $T$ to be a Cantor set it gives rise to an example where the singular set is a $1$-rectifiable, $1$-Cantor set with positive $1$-Hausdorff measure.

Summary

We haven't generated a summary for this paper yet.