Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overlapping Communities and the Prediction of Missing Links in Multiplex Networks (1912.03496v2)

Published 7 Dec 2019 in physics.soc-ph and cs.SI

Abstract: Multiplex networks are a representation of real-world complex systems as a set of entities (i.e. nodes) connected via different types of connections (i.e. layers). The observed connections in these networks may not be complete and the link prediction task is about locating the missing links across layers. Here, the main challenge is about collecting relevant evidence from different layers to assist the link prediction task. It is known that co-membership in communities increases the likelihood of connectivity between nodes. We discuss that co-membership in the communities of the similar layers augments the chance of connectivity. The layers are considered similar if they show significant inter-layer community overlap. Moreover, we found that although the presence of link is correlated in layers but the extent of this correlation is not the same across different communities. Our proposed, ML-BNMTF, as a link prediction method in multiplex networks, is devised based on these findings. ML-BNMTF outperforms baseline methods specifically when the global link overlap is low.

Citations (12)

Summary

We haven't generated a summary for this paper yet.