Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularization Shortcomings for Continual Learning (1912.03049v4)

Published 6 Dec 2019 in cs.LG and stat.ML

Abstract: In most machine learning algorithms, training data is assumed to be independent and identically distributed (iid). When it is not the case, the algorithm's performances are challenged, leading to the famous phenomenon of catastrophic forgetting. Algorithms dealing with it are gathered in the Continual Learning research field. In this paper, we study the regularization based approaches to continual learning and show that those approaches can not learn to discriminate classes from different tasks in an elemental continual benchmark: the class-incremental scenario. We make theoretical reasoning to prove this shortcoming and illustrate it with examples and experiments. Moreover, we show that it can have some important consequences on continual multi-tasks reinforcement learning or in pre-trained models used for continual learning. We believe that highlighting and understanding the shortcomings of regularization strategies will help us to use them more efficiently.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Timothée Lesort (26 papers)
  2. Andrei Stoian (9 papers)
  3. David Filliat (37 papers)
Citations (47)

Summary

We haven't generated a summary for this paper yet.