Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Morphisms to noncommutative projective lines (1912.02921v3)

Published 5 Dec 2019 in math.AG, math.QA, and math.RA

Abstract: Let $k$ be a field, let ${\sf C}$ be a $k$-linear abelian category, let $\underline{\mathcal{L}}:={\mathcal{L}{i}}{i \in \mathbb{Z}}$ be a sequence of objects in ${\sf C}$, and let $B_{\underline{\mathcal{L}}}$ be the associated orbit algebra. We describe sufficient conditions on $\underline{\mathcal{L}}$ such that there is a canonical morphism from the noncommutative space ${\sf Proj }B_{\underline{\mathcal{L}}}$ to a noncommutative projective line in the sense of \cite{abstractp1}, generalizing the usual construction of a map from a scheme $X$ to $\mathbb{P}{1}$ defined by an invertible sheaf $\mathcal{L}$ generated by two global sections. We then apply our results to construct, for every natural number $d>2$, a degree two cover of Piontkovski's $d$th noncommutative projective line by a noncommutative elliptic curve in the sense of Polishchuk.

Summary

We haven't generated a summary for this paper yet.