Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sensitivity analysis via the proportion of unmeasured confounding (1912.02793v2)

Published 5 Dec 2019 in stat.ME

Abstract: In observational studies, identification of ATEs is generally achieved by assuming that the correct set of confounders has been measured and properly included in the relevant models. Because this assumption is both strong and untestable, a sensitivity analysis should be performed. Common approaches include modeling the bias directly or varying the propensity scores to probe the effects of a potential unmeasured confounder. In this paper, we take a novel approach whereby the sensitivity parameter is the "proportion of unmeasured confounding:" the proportion of units for whom the treatment is not as good as randomized even after conditioning on the observed covariates. We consider different assumptions on the probability of a unit being unconfounded. In each case, we derive sharp bounds on the average treatment effect as a function of the sensitivity parameter and propose nonparametric estimators that allow flexible covariate adjustment. We also introduce a one-number summary of a study's robustness to the number of confounded units. Finally, we explore finite-sample properties via simulation, and apply the methods to an observational database used to assess the effects of right heart catheterization.

Citations (45)

Summary

We haven't generated a summary for this paper yet.