Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Residual-based a posteriori error estimates for a conforming mixed finite element discretization of the Monge-Ampère equation (1912.02690v1)

Published 3 Dec 2019 in math.NA and cs.NA

Abstract: In this paper we develop a new a posteriori error analysis for the Monge-Amp`ere equation approximated by conforming finite element method on isotropic meshes in 2D. The approach utilizes a slight variant of the mixed discretization proposed by Gerard Awanou and Hengguang Li in International Journal of Numerical Analysis and Modeling, 11(4):745-761, 2014. The a posteriori error estimate is based on a suitable evaluation on the residual of the finite element solution. It is proven that the a posteriori error estimate provided in this paper is both reliable and efficient.

Summary

We haven't generated a summary for this paper yet.