Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Region-Wise Attack: On Efficient Generation of Robust Physical Adversarial Examples (1912.02598v2)

Published 5 Dec 2019 in cs.LG

Abstract: Deep neural networks (DNNs) are shown to be susceptible to adversarial example attacks. Most existing works achieve this malicious objective by crafting subtle pixel-wise perturbations, and they are difficult to launch in the physical world due to inevitable transformations (e.g., different photographic distances and angles). Recently, there are a few research works on generating physical adversarial examples, but they generally require the details of the model a priori, which is often impractical. In this work, we propose a novel physical adversarial attack for arbitrary black-box DNN models, namely Region-Wise Attack. To be specific, we present how to efficiently search for regionwise perturbations to the inputs and determine their shapes, locations and colors via both top-down and bottom-up techniques. In addition, we introduce two fine-tuning techniques to further improve the robustness of our attack. Experimental results demonstrate the efficacy and robustness of the proposed Region-Wise Attack in real world.

Citations (1)

Summary

We haven't generated a summary for this paper yet.