Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RoNGBa: A Robustly Optimized Natural Gradient Boosting Training Approach with Leaf Number Clipping (1912.02338v1)

Published 5 Dec 2019 in cs.LG and stat.ML

Abstract: Natural gradient has been recently introduced to the field of boosting to enable the generic probabilistic predication capability. Natural gradient boosting shows promising performance improvements on small datasets due to better training dynamics, but it suffers from slow training speed overhead especially for large datasets. We present a replication study of NGBoost(Duan et al., 2019) training that carefully examines the impacts of key hyper-parameters under the circumstance of best-first decision tree learning. We find that with the regularization of leaf number clipping, the performance of NGBoost can be largely improved via a better choice of hyperparameters. Experiments show that our approach significantly beats the state-of-the-art performance on various kinds of datasets from the UCI Machine Learning Repository while still has up to 4.85x speed up compared with the original approach of NGBoost.

Citations (5)

Summary

We haven't generated a summary for this paper yet.