Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-Scale Semi-Supervised Learning via Graph Structure Learning over High-Dense Points (1912.02233v1)

Published 4 Dec 2019 in cs.LG and stat.ML

Abstract: We focus on developing a novel scalable graph-based semi-supervised learning (SSL) method for a small number of labeled data and a large amount of unlabeled data. Due to the lack of labeled data and the availability of large-scale unlabeled data, existing SSL methods usually encounter either suboptimal performance because of an improper graph or the high computational complexity of the large-scale optimization problem. In this paper, we propose to address both challenging problems by constructing a proper graph for graph-based SSL methods. Different from existing approaches, we simultaneously learn a small set of vertexes to characterize the high-dense regions of the input data and a graph to depict the relationships among these vertexes. A novel approach is then proposed to construct the graph of the input data from the learned graph of a small number of vertexes with some preferred properties. Without explicitly calculating the constructed graph of inputs, two transductive graph-based SSL approaches are presented with the computational complexity in linear with the number of input data. Extensive experiments on synthetic data and real datasets of varied sizes demonstrate that the proposed method is not only scalable for large-scale data, but also achieve good classification performance, especially for extremely small number of labels.

Citations (4)

Summary

We haven't generated a summary for this paper yet.