Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Copula-based anomaly scoring and localization for large-scale, high-dimensional continuous data (1912.02166v1)

Published 4 Dec 2019 in cs.LG, cs.CE, math.PR, and stat.ML

Abstract: The anomaly detection method presented by this paper has a special feature: it does not only indicate whether an observation is anomalous or not but also tells what exactly makes an anomalous observation unusual. Hence, it provides support to localize the reason of the anomaly. The proposed approach is model-based; it relies on the multivariate probability distribution associated with the observations. Since the rare events are present in the tails of the probability distributions, we use copula functions, that are able to model the fat-tailed distributions well. The presented procedure scales well; it can cope with a large number of high-dimensional samples. Furthermore, our procedure can cope with missing values, too, which occur frequently in high-dimensional data sets. In the second part of the paper, we demonstrate the usability of the method through a case study, where we analyze a large data set consisting of the performance counters of a real mobile telecommunication network. Since such networks are complex systems, the signs of sub-optimal operation can remain hidden for a potentially long time. With the proposed procedure, many such hidden issues can be isolated and indicated to the network operator.

Citations (14)

Summary

We haven't generated a summary for this paper yet.