2000 character limit reached
Exponential convergence of Sobolev gradient descent for a class of nonlinear eigenproblems (1912.02135v3)
Published 4 Dec 2019 in math.NA and cs.NA
Abstract: We propose to use the {\L}ojasiewicz inequality as a general tool for analyzing the convergence rate of gradient descent on a Hilbert manifold, without resorting to the continuous gradient flow. Using this tool, we show that a Sobolev gradient descent method with adaptive inner product converges exponentially fast to the ground state for the Gross-Pitaevskii eigenproblem. This method can be extended to a class of general high-degree optimizations or nonlinear eigenproblems under certain conditions. We demonstrate this generalization by several examples, in particular a nonlinear Schr\"odinger eigenproblem with an extra high-order interaction term. Numerical experiments are presented for these problems.