Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implementing a smooth exact penalty function for general constrained nonlinear optimization (1912.02093v1)

Published 3 Dec 2019 in math.OC, cs.NA, and math.NA

Abstract: We build upon Estrin et al. (2019) to develop a general constrained nonlinear optimization algorithm based on a smooth penalty function proposed by Fletcher (1970, 1973b). Although Fletcher's approach has historically been considered impractical, we show that the computational kernels required are no more expensive than those in other widely accepted methods for nonlinear optimization. The main kernel for evaluating the penalty function and its derivatives solves structured linear systems. When the matrices are available explicitly, we store a single factorization each iteration. Otherwise, we obtain a factorization-free optimization algorithm by solving each linear system iteratively. The penalty function shows promise in cases where the linear systems can be solved efficiently, e.g., PDE-constrained optimization problems when efficient preconditioners exist. We demonstrate the merits of the approach, and give numerical results on several PDE-constrained and standard test problems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.