Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp Hardy space estimates for multipliers (1912.01749v3)

Published 4 Dec 2019 in math.CA

Abstract: We provide an improvement of Calder\'on and Torchinsky's version of the H\"ormander multiplier theorem on Hardy spaces $Hp$ ($0<p<\infty$), by replacing the Sobolev space $L_s^2(A_0)$ by the Lorentz-Sobolev space $L_s^{\tau^{(s,p)} ,\min(1,p) }(A_0)$, where $\tau^{(s,p)} =\frac{n}{s-(n/\min{(1,p)}-n)}$ and $A_0$ is the annulus $\{\xi \in \mathbb{R}^n: 1/2<|\xi|\<2\}$. Our theorem also extends that of Grafakos and Slav\'ikov\'a to the range $0<p\le 1$. Our result is sharp in the sense that the preceding Lorentz-Sobolev space cannot be replaced by a smaller Lorentz-Sobolev space $L^{r,q}_s(A_0)$ with $r< \tau^{(s,p)} $ or $q>\min(1,p)$.

Summary

We haven't generated a summary for this paper yet.