2000 character limit reached
Dispersive estimate for quasi-periodic Schrödinger operators on 1-$d$ lattices (1912.01528v1)
Published 3 Dec 2019 in math-ph and math.MP
Abstract: Consider the one-dimensional discrete Schr\"odinger operator $H_{\theta}$: $$(H_{\theta} q)n=-(q{n+1}+q_{n-1})+ V(\theta+n\omega) q_n \ , \quad n\in Z \ ,$$ with $\omega\in Rd$ Diophantine, and $V$ a real-analytic function on $ Td=( R/2\pi Z)d$. For $V$ sufficiently small, we prove the dispersive estimate: {for every $\phi\in\ell1( Z)$,} $$ | e{-{\rm i}tH_{\theta}}\phi |{\ell\infty} \leq K_0 \frac{ |\ln\varepsilon_0|{a(\ln\ln(2+\langle t\rangle))2 d}} {\langle t\rangle{\frac13}} |\phi|{\ell1} \ , \quad \langle t \rangle:=\sqrt{1+t2} \ ,$$ {with $a$ and $K_0$ two absolute constants} and $\varepsilon_0$ an analytic norm of $V$. The estimate holds for every $\theta\in Td$.