Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion Maps for Embedded Manifolds with Boundary with Applications to PDEs (1912.01391v3)

Published 28 Nov 2019 in math.NA, cs.NA, and math.AP

Abstract: Given only a collection of points sampled from a Riemannian manifold embedded in a Euclidean space, in this paper we propose a new method to solve elliptic partial differential equations (PDEs) supplemented with boundary conditions. Notice that the construction of triangulations on unknown manifolds can be both difficult and expensive, both in terms of computational and data requirements, our goal is to solve these problems without such constructions. Instead, we rely only on using the sample points to define quadrature formulas on the unknown manifold. Our main tool is the diffusion maps algorithm. We re-analyze this well-known method in a weak (variational) sense. The latter reduces the smoothness requirements on the underlying functions which is crucial to approximating weak solutions to PDEs. As a by-product, we also provide a rigorous justification of the well-known relationship between diffusion maps and the Neumann eigenvalue problems. We then use a recently developed method of estimating the distance to boundary function (notice that the boundary location is assumed to be unknown and must be estimated from data) in order to correct the boundary error term in the diffusion maps construction. Finally, using this estimated distance, we illustrate how to impose Dirichlet, Neumann, and mixed boundary conditions for some common PDEs based on the Laplacian. Several numerical examples confirm our theoretical findings.

Citations (18)

Summary

We haven't generated a summary for this paper yet.