Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of information gap decision theory in practical energy problems: A comprehensive review (1912.00811v1)

Published 2 Dec 2019 in eess.SY and cs.SY

Abstract: The uncertainty quantification and risk modeling are hot topics in the operation and planning of energy systems. The system operators and planners are decision-makers that need to handle the uncertainty of input data of their models. As an example, energy consumption has always been a critical problem for operators since the forecasted values, and the actual consumption is never expected to be the same. The penetration of renewable energy resources is continuously increasing in recent and upcoming years. These technologies are not dispatch-able and are highly dependent on natural resources. This would make real-time energy balancing more complicated. Another source of uncertainty is related to energy market prices which are determined by the market participants behaviors. To consider these issues, uncertainty modeling should be performed. Various approaches have been previously utilized to model the uncertainty of these parameters such as probabilistic approaches, possibilistic approaches, hybrid possibilistic-probabilistic approach, information gap decision theory, robust and interval optimization techniques. This paper reviews the research works that used information gap decision theory for uncertainty modeling in energy and power systems.

Citations (95)

Summary

We haven't generated a summary for this paper yet.