Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speeding up Word Mover's Distance and its variants via properties of distances between embeddings (1912.00509v2)

Published 1 Dec 2019 in cs.CL and cs.LG

Abstract: The Word Mover's Distance (WMD) proposed by Kusner et al. is a distance between documents that takes advantage of semantic relations among words that are captured by their embeddings. This distance proved to be quite effective, obtaining state-of-art error rates for classification tasks, but is also impracticable for large collections/documents due to its computational complexity. For circumventing this problem, variants of WMD have been proposed. Among them, Relaxed Word Mover's Distance (RWMD) is one of the most successful due to its simplicity, effectiveness, and also because of its fast implementations. Relying on assumptions that are supported by empirical properties of the distances between embeddings, we propose an approach to speed up both WMD and RWMD. Experiments over 10 datasets suggest that our approach leads to a significant speed-up in document classification tasks while maintaining the same error rates.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub