Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Optimization for Reinforcement Learning: From Single Agent to Cooperative Agents (1912.00498v1)

Published 1 Dec 2019 in cs.LG, cs.AI, cs.MA, cs.SY, and eess.SY

Abstract: This article reviews recent advances in multi-agent reinforcement learning algorithms for large-scale control systems and communication networks, which learn to communicate and cooperate. We provide an overview of this emerging field, with an emphasis on the decentralized setting under different coordination protocols. We highlight the evolution of reinforcement learning algorithms from single-agent to multi-agent systems, from a distributed optimization perspective, and conclude with future directions and challenges, in the hope to catalyze the growing synergy among distributed optimization, signal processing, and reinforcement learning communities.

Citations (82)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.