Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A rectifiability result for finite-perimeter sets in Carnot groups (1912.00493v2)

Published 1 Dec 2019 in math.AP, math.DG, math.GR, and math.MG

Abstract: In the setting of Carnot groups, we are concerned with the rectifiability problem for subsets that have finite sub-Riemannian perimeter. We introduce a new notion of rectifiability that is, possibly, weaker than the one introduced by Franchi, Serapioni, and Serra Cassano. Namely, we consider subsets $\Gamma$ that, similarly to intrinsic Lipschitz graphs, have a cone property: there exists an open dilation-invariant subset $C$ whose translations by elements in $\Gamma$ don't intersect $\Gamma$. However, a priori the cone $C$ may not have any horizontal directions in its interior. In every Carnot group, we prove that the reduced boundary of every finite-perimeter subset can be covered by countably many subsets that have such a cone property. The cones are related to the semigroups generated by the horizontal half-spaces determined by the normal directions. We further study the case when one can find horizontal directions in the interior of the cones, in which case we infer that finite-perimeter subsets are countably rectifiable with respect to intrinsic Lipschitz graphs. A sufficient condition for this to hold is the existence of a horizontal one-parameter subgroup that is not an abnormal curve. As an application, we verify that this property holds in every filiform group, of either first or second kind.

Summary

We haven't generated a summary for this paper yet.