Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bifurcation analysis of stationary solutions of two-dimensional coupled Gross-Pitaevskii equations using deflated continuation (1912.00023v1)

Published 29 Nov 2019 in nlin.PS, cs.NA, math.DS, math.NA, and physics.comp-ph

Abstract: Recently, a novel bifurcation technique known as the deflated continuation method (DCM) was applied to the single-component nonlinear Schr\"odinger (NLS) equation with a parabolic trap in two spatial dimensions. The bifurcation analysis carried out by a subset of the present authors shed light on the configuration space of solutions of this fundamental problem in the physics of ultracold atoms. In the present work, we take this a step further by applying the DCM to two coupled NLS equations in order to elucidate the considerably more complex landscape of solutions of this system. Upon identifying branches of solutions, we construct the relevant bifurcation diagrams and perform spectral stability analysis to identify parametric regimes of stability and instability and to understand the mechanisms by which these branches emerge. The method reveals a remarkable wealth of solutions: these do not only include some of the well-known ones including, e.g., from the Cartesian or polar small amplitude limits of the underlying linear problem but also a significant number of branches that arise through (typically pitchfork) bifurcations. In addition to presenting a ``cartography'' of the landscape of solutions, we comment on the challenging task of identifying {\it all} solutions of such a high-dimensional, nonlinear problem.

Citations (23)

Summary

We haven't generated a summary for this paper yet.